
www.manaraa.com

1

Upgrading Multimedia Data Handling Services of a
Database Management System by an Interaction Manager

Heiko Thimm and Thomas C. Rakow

GMD – Integrated Publication and Information Systems Institute (IPSI)
Dolivostr. 15, 6100 Darmstadt

Germany

e–mail: {thimm, rakow}@darmstadt.gmd.de

Abstract

A multimedia database management system (MM-DBMS) supports the development of multimedia

applications and the handling of multimedia data at runtime. It explicitly handles continuous data

such as video, audio and animation. The user of a MM-DBMS gets all the support he needs to store,

manipulate, and present such data. Hence application development is not forced to deal with the im-

plementation of basic multimedia concepts and modelling primitives. In this paper we especially

focus on the integration of an Interaction Manager component (IAM) into a DBMS (i) to present

continuous data and (ii) to control their presentation. Presentation control is possible interactively

from a control panel, an interactive query or an application program. The connection of the IAM

to the functionality of our data model language and the handling of continuous data presentations

and presentation control events in cooperation with other system modules is described. In our opin-

ion, the proposed IAM represents an important step towards the integration of multimedia data han-

dling into the services of a DBMS to realize efficient support for multimedia data presentations.

1 Introduction and Motivation
Suppose that continuous data to be presented are stored in a database and that the DBMS lacks sup-

port to present continuous data. Application programmers are forced to include continuous data pre-

sentation functionality in each program. This is not an acceptable solution with respect to program

design and programming efficiency. Since the presentation processing implemented in the applica-

tion program is transparent to the DBMS it cannot provide efficient support. For example despite

www.manaraa.com

2

of the interruption of a video presentation, the DBMS continues the retrieval of the data from second-

ary storage. The programmer has to implement a typical producer/consumer application that in-

cludes parallel hardware. The producer retrieves the continuous data whereas the consumer presents

the data. Thus an efficient interprocess-communication mechanism is necessary. The communica-

tion protocol required has to specify the way continuous data streams from the DBMS to the applica-

tion program are initiated and controlled (halted, resumed, terminated, manipulated with respect to

direction and speed). Agreements on the quality of service parameters and on the applied coding and

de/compression techniques have to be ‘‘worked out’’ in order to enable a correct interpretation by

the receiving application program. Considering these requirements, we can deduce that the protocol

will be a very complex one.

Contrary to the former assumption, let us now think of a DBMS that itself is handling continuous

data presentations. Users just issue presentation requests while the DBMS itself is dealing with the

datastreams, the decompression and interpretation of the data and intramedia as well as intermedia

synchronization. Thus, functionality to present continuous data and control their presentation is not

an implementation task. Efficiency of the datastream handling is an aspect of the DBMS imple-

mentation.

We will present a DBMS architecture which has a client-server architecture and features an IAM

component. The IAM is contained in both, the client and the server. However, for the IAM there is

no differentiation necessary since the Object Manager (OM) component makes the differences trans-

parent to the other components. The IAM internally provides support to present continuous data and

to control its presentation. Presentation control is possible interactively from a control panel, an in-

teractive query, or an application program. Continuous media and input- and output devices are

modelled in our DML. Processing requests can be issued to the IAM via DML objects or the query

language.

If the initiation of a new presentation is requested, the IAM first checks the availability of the re-

quired output device. A message is provided to the user if the device is not available. If it is available

the IAM generates a temporary object called Presentation Object that represents the initiated contin-

uous data presentation. Information about the presentation become property values of the Presenta-

www.manaraa.com

3

tion Object. A presentation control panel is provided by the IAM if demanded within the presenta-

tion initiation. Then the IAM instructs the OM to load the data into the buffer. Next the continuous

presentation of the continuous data units (concerning video/audio such a unit is a single frame/a cer-

tain bunch of audio samples) is started and continuously driven by the IAM. The actual presentation

of the units is performed by the involved output device. Thus the handling of the data formats (e.g.

for data decompression) and the management of devices is transparent to the users. Due to its large

size, continuous data is buffered in portions. Hence, after one portion has been presented the next

one has to be loaded into the buffer. This is requested by the IAM which is closely interoperating

with the OM. This cooperation is based on a certain protocol which makes the internal datastream

handling transparent to the users.

The means of controlling a continuous data presentation are events which are issued to the corre-

sponding temporary Presentation Object. By utilizing their own knowledge about the presentation,

Presentation Objects filter the events that require a change of the IAM’s processing from those that

do not. Relevant events that have impact on the IAM’s current processing cause presentation control

requests. The Presentation Objects issue these presentation control requests to the IAM which ad-

justs its operation accordingly with respect to the involved presentation. Furthermore, it delivers in-

formation to the OM which adjusts its data buffering strategy accordingly as well. For example, con-

cerning a stop-request, the presentation is interrupted and the next portion of the continuous data

is not loaded any more. Or with respect to, e.g., a request claiming a video presentation with double

presentation speed only every second frame is loaded and presented. The interrupt handling required

for this is transparent to the users since it is hidden within the concept of an event. Built-in datatypes

for continuous data of our data modelling language provide operations that are connected to the

IAM’s services. Thus at the data modelling level, the IAM makes the presentation of continuous data

and its control transparent to the users. The current presentation state provided by the properties of

the Presentation Object can be used within query specifications.

Currently in the AMOS-Project at GMD-IPSI, we are developing an object-oriented and distributed

MM-DBMS [RM 93]. Already existing components of the object-oriented DBMS prototype VO-

DAK [KNS 89, KNS 90, KN 90, MRKN 92] have to be modified. The IAM described in this paper

www.manaraa.com

4

represents one of the additions required for the integration of multimedia data handling into the ser-

vices of the DBMS.

This paper is organized in the following way. In section two, related work is described and compared

to our approach. In section three, we derive the main requirements for our IAM component by look-

ing at specific properties of multimedia data and multimedia computing. In section four, the archi-

tecture of the entire VODAK MM-DBMS is introduced. Section five covers VODAK’s data model

language support for the handling of multimedia data. In addition we illustrate how the IAM’s ser-

vices can be utilized via this language. We also show the data and control flow within the system

for performing and controlling continuous data presentations. The IAM’s operation and cooperation

with relevant other system-internal components and its internal structure are described as well. Con-

cluding remarks are given at the end where we also outline our future work and provide some refer-

ences to multimedia projects in which we are involved.

2 Related Work
References in the literature related to our approach for an IAM are not very frequent. [CHT 86] sug-

gests a Presentation Manager providing means for effective multimedia object presentation and

browsing on the screen of a workstation. The Presentation Manager treats symmetrically objects

which are mainly composed of text and objects which are mainly composed of voice. However, the

proposed Presentation Manager, a component of the MINOS multimedia information system, repre-

sents a very specialized approach. Support for the continuous data is hard-wired in the system and

presentation control is not considered. Furthermore, support for multimedia application program-

ming utilizing the MINOS Presentation Manager has not been documented.

In [WKL 86, WK 87], the Multimedia Information Manager (MIM), a component of the ORION

object-oriented DBMS, is introduced. The integration of the new datatypes is accomplished through

a set of definitions of class hierarchies and a message passing protocol not only for the multimedia

capture, storage, and presentation devices, but also for the captured and stored multimedia objects.

This way, a high degree of flexibility is achieved since new storage or presentation devices are easily

included by providing the corresponding types as subtypes of the existing types. This approach is

www.manaraa.com

5

very promising, but it remains more or less a collection of classes. Specific database issues such as

query processing, user interaction and architectural implications are not considered. Furthermore,

it can be questioned whether the modelling of devices down to the level of methods such as get-next-

block lead to efficient realizations. In the case of continuous media such as video or audio, this is

just not feasible.

A presentation environment for hypermedia objects stored in a remote database and exchanged on

a broadband network is proposed in [MPR 92]. The presentation control is handled via events like

in our approach but no DBMS support is described. In [LG 90], a technique for formally specifying

and modelling the temporal composition of multimedia data is proposed. Furthermore, a strategy

is presented for constructing a database schema to facilitate data storage and retrieval of data ele-

ments based on the intermedia timing relationships established by the proposed modeling tool.

Several other publications that do not focus specifically on MM-DBMS are related to the presenta-

tion and control of continuous data. An object-oriented framework for composite multimedia is de-

scribed in [Gi 91]. Composite multimedia is constructed from multimedia primitives and temporal

transformations. Active objects based on real-time processes are proposed as multimedia primitives.

[ATWGA 90] describes a resource model providing a uniform basis for reserving and scheduling

resources in both networks and hosts towards support for continuous media in general-purpose dis-

tributed operating systems. [GC 91] provides a theoretical framework for the real time requirements

of delay-sensitive multimedia data. [Ste 90] describes synchronization properties in multimedia sys-

tems. In [PE 91] a variable rate strategy for the retrieval of audio data is proposed which dynamically

adjusts audio fidelity to match variations in available retrieval bandwidth. The design and imple-

mentation of a continuous media player for UNIX workstations is described in [RS 92]. The project

DOM deals with distributed multimedia object management [MHB 91].

3 Requirements for the Interaction Manager Component
Specific properties of continuous data which have been analyzed in detail, for instance in [AK 92]

and [TR 93], are (1) time-dependency and (2) high volume. Another aspect is that multimedia com-

puting involves specific input- and output devices. Our requirements for the IAM that we give in

www.manaraa.com

6

the following have been derived from these specific multimedia data properties and from specific

aspects of multimedia computing.

(a) Advanced Functionality:

The IAM is primarily aiming at efficient support to capture, present and manipulate continuous data

and to control their presentation interactively. Hence, for each continuous datatype, media-specific

functions are required. Functionality for presentations and their control may not be limited to those

functions known from consumer electronic devices like, e.g., presentation interruption, speed and

direction manipulation. Concerning video, it should be possible to focus on a certain area, to zoom,

to resize, ...etc. Since we have a client-server environment, it also should be allowed for users to

specify individual quality of service parameters in order to match the available bandwidth. Function-

alities for the manipulation of continuous data should allow to manipulate continuous data units, like

for example fading out the loudness of an audio or pixel manipulations with respect to video frames.

Moreover, copy and paste operations are desirable to tailor own videos and audios. Note that we will

extend our current solution for the IAM with functionality to capture and manipulate continuous data

later.

(b) Intramedia Synchronization:

The single units of continuous data like, for instance, the frames of a video-clip must not be presented

at arbitrary points in time. Instead, the presentation has to conform to a certain rate. Concerning vid-

eo presentations for instance, a minimum rate of 20 frames per second is required in order to achieve

continuous movements. The IAM cannot perform continuous data presentations without being

aware of the corresponding intramedia synchronization requirements.

(c) Interruptability:

Some of the presentation control commands are addressed to currently running presentations like

the stop-command. Hence, interruptability is a central requirement for our IAM. Note that these

commands depend on the multimedia datatype and that they can be time-critical. For example, con-

cerning the stop-command, with respect to a running video presentation, the video should be halted

exactly at the current position.

www.manaraa.com

7

(d) Efficient Internal Continuous Data Transportation:

Despite the availability of efficient data compression techniques, handling continuous data still

means dealing with high volume data. Hence the IAM’s functionality for interacting with continuous

data should be based on efficient internal data transportation. This concerns the transportation be-

tween storage hierarchies and the main memory, the transportation to/from output-/input-devices,

and the network transportation. Thus, the number of internal copy-operations of continuous data

should be minimized since they are extremely time consuming.

(e) Management of Multimedia-Specific Devices:

Many different physical devices are involved in interacting with multimedia data since one standard

device cannot handle all kinds of multimedia data. Hence, the IAM has to deal with compression

chips, equipment for analog or digital video/audio, presentation devices like loudspeakers, moni-

tors, and windows, ... etc. While some devices can be used by several parallel presentations (e.g.

video board, JPEG-chip), others cannot (e.g. speakers, microphone). The IAM has to allow and

manage that one device can be shared by several parallel presentations. For devices that cannot han-

dle parallel presentations, it has to consider device utilization conflicts that can occur (i) when an

attempt is made to present several continuous data instances at the same time on one of these devices

or (ii) when another (possibly foreign) application attempts to seize such a device which is currently

busy.

(f) Parallel Presentations:

The exploitation of multiple media types in parallel is one factor of the attractiveness of multimedia

applications. Hence in general, our IAM must support parallel presentations of continuous data. We

have to differentiate between two kinds of parallel presentations. (i) parallel presentations without

synchronization are e.g. several videos independently presented in parallel or an audio presentation

that provides background sound for one or several video presentations. (ii) parallel presentations that

have to be performed synchronously are, e.g., a video and its sound-track (see g).

(g) Intermedia Synchronization:

Continuous data presentations that should synchronously run in parallel require some synchroniza-

tion information. The IAM must be able to handle this information. Hence, it needs to know the

www.manaraa.com

8

means of the intermedia synchronization mechanism. Since the development of a concept for inter-

media synchronization for VODAK has not been completed yet, this requirement has not been re-

flected in our IAM component yet.

4 Architecture of a MM-DBMS
A simplified graphical representation of the architecture of the VODAK MM-DBMS is given in fig-

ure 1 [TR 93]. The Object Manager module keeps the concrete location of the data transparent to

the other system components. Thus, the presented architecture is adequate for the client configura-

tion as well as for the server configuration. However, some parameters are different. For example,

the time required for the data transportation.

Since VODAK is an object-oriented system, instead of performing operations on objects operations

are executed by the objects themselves. This is achieved by sending specific messages to the objects.

The Message and Event Handler Module is responsible for the realization of this mechanism. It de-

termines the location of the receiver object, ensures that the receiver object and the method are

Message & Event Handler

Transaction
Manager

Object
Manager

Fig. 1: Architecture of the VODAK MM-DBMS

Interaction

Manager

Query
Interpreter

DB via
Network

Server
DB

loc. storage
system

Client Server
Conf.Conf.

Appl. Prog.
via API

Interactive

www.manaraa.com

9

loaded into the object buffer and that the method is executable. If so, the method is executed and

the result is returned.

The Transaction Manager module provides an adequate transaction model for application programs

and interactive queries accessing the data base. It allows the users to assume that any transaction,

which is the execution of a program accessing the data base, is executed atomically – as if no other

programs were executed concurrently – and reliably – as if there were no failures.

Data of the local filesystem (or any local storage device for which the local filesystem can be used

as interface like a CD-ROM), a server-database or a data repository available via network utilization

is made accessible for applications or queries by the Object Manager module.

The IAM module upgrades the multimedia data handling services of the DBMS. It offers support

to present continuous data and control their presentation interactively.

The Interactive Query Interpreter module is handling interactive queries. Application programs that

possibly contain queries can access the database via the application programming interface (API).

Note that certain changes and/or extensions of the shown modules’ current implementation are re-

quired. The transaction management is extended to support access by application tools. Thus, check-

out, check-in of large objects including persistent locks is supported. Furthermore, cooperative

transactions have to be developed. A component for the management of continuous objects is devel-

oped and added to VODAK’s Object Manager. These issues are subject to further research papers.

5 The Interaction Manager
First, we outline how our data model language supports the handling of multimedia data in general.

Next, the exploitation of the IAM’s services via this data model language is described. Then, con-

cerning our entire system, we give an overview of the data and control flow caused by performing

and controlling continuous data presentations. In the next part, we show how the IAM internally

realizes the presentation of continuous data including presentation control. Within this context, the

IAM’s cooperation with other relevant system internal components is outlined as well. At the end

of this section, we provide an overview of the internal structure of the IAM component.

www.manaraa.com

10

5.1 Multimedia Data Modelling in VML

Continuous Data Modelling: The DDL and DML facility of VODAK, called VML (VODAK Mod-

el Language) [Kl 92b], currently has been enriched by built-in datatypes for continuous data. These

built-in datatypes can be specified as datatypes of VML properties. Thus, continuous data are han-

dled as property values of VML objects.

In contrast to trivial built-in datatypes for continuous data such as BLOB (Binary Large Object) [Sh

90], we emphasize semantically rich built-in datatypes that support continuous access to units of

continuous data (i.e. concerning audio/video, this is accessibility to a single audio-sample/video-

frame). Like the well known datatype ‘‘integer’’ which inherently provides generic algebraic opera-

tions, our built-in datatypes provide generic facilities for the interaction with continuous data.

Modelling of Devices: Input- and output-devices are modelled as VML-objects. Control panels that

allow to control the capture or presentation of continuous data on such a device are modelled as VML

objects as well. Thus, devices can be identified via their OID. Although handled as VML objects,

the functionality provided by input- and output devices is not completely encapsulated in VML

methods. For performance reasons, at least at the current time, this is not a good solution. Instead

the functionality of the devices is utilized via their API.

5.2 Interaction Manager Utilization via VML

As a part of the definition of a VML object’s structure, continuous data itself is modelled as a proper-

ty (see figure 2). A VML built-in continuous datatype is specified as the property domain. As a part

of the VML object’s behavior modelled as VML methods, there is the user-defined method pres-

ent(...). The implementation of this method utilizes the operation initiate_Pres(...), which is part of

the built-in datatype’s functionality.

From the modelling point of view we can draw the following analogy: In order to increase the current

value of a property of type integer by an arbitrary integer value, we can write e.g. the following VML

method specification ‘‘plus(number: INT)’’. The algebraic operation ‘‘+’ ’, which is inherently pro-

vided by the built-in datatype integer, is used within the implementation of this VML method. In

www.manaraa.com

11

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÉÉÉÉÉÉÉÉÉÉÉÉÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇ

Output
Device

Crtl.
Device

IAM

Output Device Object

Control Device Object

Presentation
Object

Continuous
Object

present(...)

VML Method

VML Property

initiate_Pres(...)

VML Method Calls

VML-Events

VML Events

VML Built-in Datatype
with certain Functionality

has property domainutilizes

with Cont. Data
as Property Value

pres. initiation
request

Fig. 2: Utilizing the IAM via VML

pres. control request

Calls for VML Methods
with tagged VML Events

(pres. ctrl.)

(pres. ctrl.)

(pres. initiation)

AP/
Interactive
Query

device
initialization

...

AP/
Interactive
Query

the following, we call the VML object defined in this way simply Continuous Object since continu-

ous data is part of its structure.

The VML object that models the involved output device is called Output Device Object. At the level

of our framework, it just provides an abstraction of the required device. In order to utilize a specific

device, the OID of the corresponding Device Object has to be specified.

www.manaraa.com

12

VML objects that provide an abstraction of a control device (e.g. video control panel) are called Con-

trol Device Objects. Control device facilities (e.g. buttons, sliders) are connected to VML methods

of the corresponding Control Device Object. Thus, an activated control device facility causes a call

for the corresponding VML method. VML events which are issued before the actual method is

executed are tagged to these VML methods. The purpose of the method is the manipulation of the

control device facility. For example, if the method is connected to a button, the method execution

visualizes the change from a deactivated to an activated button.

For each continuous data presentation, there is a VML object which is called Presentation Object.

These objects are dynamically generated at runtime by the IAM if a presentation initiation is re-

quested. Moreover, they are temporary objects since they only exist as long as the corresponding

presentation has not been killed. Presentation Objects provide the interface for controlling a continu-

ous data presentation. Furthermore, they have relevant information about the corresponding contin-

uous data presentation like, for example, the OIDs of the Output Device Object, Control Device Ob-

ject and Continuous Object, the presentation state, direction, and speed, ... etc. Updating of these

information is performed throughout the presentation session. The information is utilized in order

to filter VML events that do not have any impact on the IAM’s current processing from those that

do. For example, if the last frame of a video presentation has been reached, a VML event requesting

‘‘fast forward’’ would be filtered out. However, if just half of the video is presented, the Presentation

Object would issue the new presentation speed of the concerned presentation to the IAM. Hence,

for relevant VML events, Presentation Objects issue corresponding presentation control requests to

the IAM.

Initiating Continuous Data Presentations: The user-defined VML method present(...) is called

from an application program or an interactive query [Fi 92]. Since in the method implementation

the built-in method initiate_Pres(...) is utilized, the method execution causes a presentation initia-

tion request which is issued to the IAM. Certain parameters are passed to the IAM within this process

like, for example, the OID of the desired Output Device Object, the OID of the desired Control De-

vice Object, the quality of service parameters, presentation start position, speed, direction, ... etc.

The availability of the required output device(s) is checked next. If this check is negative, the IAM

www.manaraa.com

13

issues an error message. If it is positive, the device is initialized. Then the IAM generates a corre-

sponding temporary Presentation Object and returns its OID. Relevant information about the pre-

sentation become property values of the Presentation Object. If an OID of a Control Object was giv-

en as parameter of the presentation initiation request, the IAM opens up the corresponding control

device. Then the actual continuous data presentation is started and performed, as described in section

5.4 in detail.

Controlling Continuous Data Presentations: Three possibilities for controlling a continuous data

presentation are considered: (1) by an application program, (2) by an interactive query and (3) via

utilization of a control device. In general, the means of requesting presentation control processing

are predefined VML events. These VML events are issued to the corresponding Presentation Object.

However, in (3) these VML events are not directly issued like in (1) and (2). They are issued as results

of calls for VML-methods of the Control Device Object. Since they are tagged to these VML meth-

ods they are issued before the execution of the actual method starts. If a Presentation Object receives

a VML event, it evaluates the consequences, i.e. it checks which presentation control request it has

to issue to the IAM, if at all . The IAM handles the presentation control requests of its continuous

data presentations. Depending on the requests, currently running presentations have to be changed,

for example, with respect to speed or direction, interrupted, resumed, killed... etc. If a presentation

is killed, the IAM automatically discards the corresponding Presentation Object.

Note for clarity, in figure 2 the Message and Event Handler Module has not been shown. However,

it is utilized whenever a method call or VML event is sent to a VML object. Figure 2 shows the VML

world as well as aspects of the physical world (output device, control device) and some system-inter-

nal aspects of the VODAK implementation. Bold edges denote the VML world.

5.3 Data and Control Flow
We believe that by our IAM component we can satisfy the requirements for interacting with continu-

ous data for a large number of multimedia applications. However, we cannot exclude that sometimes

the application programmer is forced or prefers to implement the functionality within the application

program himself. For example, when the application programmer wants to utilize a special kind of

www.manaraa.com

14

ÇÇÇ
ÇÇÇ

MDDA

Protocol
COMconv. OM

MEH

OM

IAM
Dataflow
Ctrl.TM

Mgmt. Mgmt.

Fig. 3: Data and Control Flow

O2

O4

ctrl. dev.

output
device

ctrl. dev.

EventsMethod Calls

...

...

Init.

Cont. Data

O1

COBconv. OB

Output Dev. Obj.

Ctrl. Dev. Obj.

Cont. Obj.

Method Calls

Events

AP/
Interactive Query

O3

Method Calls

VML Events

Ctrl.

Pres. Obj.

continuous
data

stream(s)

output
device

window not supported by the DBMS. Hence, we have to provide some flexibility for such applica-

tions, i.e. we have to offer some alternative way for the utilization of the continuous data. This has

motivated our idea to support a direct access path to continuous data [MR 93].

We are able to provide direct access to continuous data by separately buffering continuous data in

a special object buffer called Continuous Object Buffer (COB) which is managed by the Continuous

Object Manager (COM) (see figure 3). The COM is a subcomponent of the Object Manager (OM).

The Conventional Object Manager (conv. OM) which is handling discrete data is also a subcompon-

ent of the OM. It is responsible for the conventional Object Buffer (conv. OB).

www.manaraa.com

15

The IAM uses a predefined protocol called MDDA-protocol (Multimedia Data Direct Access) to

interact with the COM. Together they satisfy the interaction requests issued within an application

program or interactively via a control device at run-time. By applying the functionality of the in-

volved output-device, the IAM controls the continuous data stream. The COB is the source and the

output device is the sink of this datastream.

Alternatively, for application programs it is allowed to directly access the COB’s contents by inter-

acting with the COM via the MDDA protocol. In this case the IAM component simply is bypassed.

5.4 Performing and Controlling Continuous Data Presentations
Our explanation of the IAM component of the VODAK MM-DBMS has not yet covered the main

aspects of the direct access to multimedia data. For simplicity, we always have assumed that the data

to be presented constantly is available within the COB. However, this is not correct since due to the

large size of continuous data, the COM normally can only load portions of continuous data into the

COB. In the following, we will call such a portion of continuous data a sequence of (consecutive)

presentation units (SPU). A single unit is, with respect to audio/video, a single audio sample/video

frame.

An important aspect of the IAM/COM-cooperation based on the MDDA protocol is that both com-

ponents work in parallel. Thus, the COM can preload SPUs.

It is not our intention to introduce the complete MDDA-protocol here (see [MR 93]). Instead, we

show how it is used by the IAM within continuous data presentations and within presentation control

processing.

The message flow diagram provided in figure 4 shows how a continuous data presentation, utilizing

the IAM, is initiated and kept running.

In the following we briefly explain each processing step:

(1) There is a VML-object that has continuous data as one of its property values. Further-

more there is a user-defined VML method that initiates its presentation. This method is

called. As explained in 5.2 this causes a corresponding call for the IAM.

www.manaraa.com

16

COMÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
Presentation Control Processing

IAM

ÇÇÇÇÇÇÇÇÇÇ
Pres. Init.

address of SPU 1

address of SPU 2

(1)

(2)

(3)

(4)

(5)

(6)

MDDA Protocol

Fig. 4: Performing Continuous Data Presentations and Processing

Pres. Ctrl.

Presentation Control Events

next SPU request

Pres.
of

SPU
1

SPU
2

SPU
3

SPU
1

SPU
2

(VML Message)

SPU request

Cont. Object

SPU 1

Pres.
of
SPU 2

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPres. Object

(VML-Event)

pres. init. request

pres. ctrl. request

www.manaraa.com

17

(2) Assuming that the availability-check for the required output-device was positive, the

IAM instructs the COM to load the first SPU into the COB.

(3) The loading procedure initiated in (2) is completed. The COM delivers a memory ad-

dress to the IAM. Starting at this address, the pointers of the SPU’s units can be consecu-

tively found.

(4) The IAM presents the SPU by repeatedly calling, for each unit of presentation data, the

presentation function of the output device. Note that this function, for performance rea-

sons, is not encapsulated within a VML method. Its execution causes the presentation of

the current unit of presentation data (concerning audio, the function can handle several au-

dio-samples). At the same time, the COM is preloading the next SPU into the COB.

(5) The last unit of presentation data of the current SPU is presented. The IAM issues a

request for the memory address of the pointer field of the next SPU’s units of presentation

data.

(6) The pointer requested in (5) is delivered. As long as no presentation control command

is issued and the end of the continuous data has not been reached, the processing is contin-

ued at (4).

While executing this algorithm, presentation control requests can occur as it is indicated at the bot-

tom of the message flow diagram. If so, the Presentation Object of the concerned presentation re-

ceives a VML event. If the VML event requires a change of the IAM’s current processing, a presen-

tation control request is issued to the IAM by the Presentation Object. Each control request received

by the IAM has its individual processing which can cause the interruption, restart, or termination

of the algorithm. Furthermore it can also cause the alteration of presentation parameters like speed

or direction.

5.5 Internal Structure
A central requirement for the design of our IAM is interruptability in order to allow for interaction

commands to control running continuous data presentations. Hence, continuous data presentations

are handled in separate processes (figure 5).

www.manaraa.com

18

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
IAM

IAC

Presentation
Process COB

COM

MDDA Protocol

to cont. data

writing pointers
to cont. data

generation
by UNIX-

exec...(...)

communication
based on
UNIX–interrupts

Fig. 5: The IAM’s Internal Structure

reading pointers

Pres. Init. Req/
valid Pres. Ctrl. Req.

systemcall

All requests to be processed by the IAM are received by the Interaction Controller component (IAC).

For each new continuous data presentation to be initiated, the IAC creates a separate presentation

process running in parallel by utilizing the UNIX-systemcall ‘‘exec...(...)’’. Dif ferent types of pre-

sentation processes can be created which are specialized in fulfilling the specific needs of the presen-

tation of an audio, a video, a sound-video or an animation.

Based on the predefined MDDA protocol, each presentation process is interoperating with the COM.

The COM guarantees that, at any time, the continuous data to be presented is available within the

COB. While the COM is writing the pointers to audio-samples/video frames into the COB, the pre-

sentation process is reading these pointers and presenting the audio-samples/video frames.

Presentation control requests which are issued from Presentation Objects are transformed into

UNIX-interrupts which are issued to the corresponding presentation processes. Hence, interrupt

handler routines are implemented in the presentation processes.

www.manaraa.com

19

6 Conclusion
We discussed first why we think that an IAM in our sense is an important contribution towards the

integration of multimedia data handling into the services of a MM-DBMS. Then by considering the

specific properties of continuous data and specific aspects of multimedia computing we derived the

main requirements of our IAM component. Next we introduced the entire system architecture of the

VODAK MM-DBMS showing the integration of the IAM component. Then we gave a comprehen-

sive description of the latter. First we covered VODAK’s support for modelling multimedia data

handling via its data model language and how the IAM’s services can be exploited via this language.

The data and control flow caused by performing and controlling continuous data presentations was

explained afterwards followed by a description of the IAM’s operation and cooperation with other

relevant system internal components. At last we gave an overview of the IAM’s internal structure.

The work presented in this paper is the first step of our research. As the next step we will extend the

IAM’s functionality by the capture and manipulation of continuous data. Since the capture of contin-

uous data is inverse to the presentation of continuous data the same requirements with respect to

time-dependency, the transportation and storage of continuous data have to be satisfied. Further-

more, we will integrate a mechanism for intermedia synchronization in order to support audio-visual

presentations which are performed according to certain synchronization data.

Finally, let us point out that concerning all efforts towards our overall goal, namely the development

of a MM-DBMS, our approaches or decisions are no armchair decisions. Instead, we always careful-

ly consider the real needs of multimedia applications since we are involved in two big interdisciplin-

ary multimedia projects called GAMMA (Globally Accessible Multi Media Archives) and MUSE

(Multimedia Technology for System Engineering) [MUSE 93]. They allow us to constantly gain

more insights about multimedia applications and serve as testbeds for our developments. So far it

turned out that this is an excellent framework for this research to successfully make the VODAK

object-oriented DBMS a true MM-DBMS.

References
[AK 92] Aberer, K., Klas, W.: The Impact of Multimedia Data on Database Management Sys-

tems, ICSI, TR-92-065, Berkeley, CA, Sept. 1992

www.manaraa.com

20

[ATWGA 90] Anderson, D.P., Tzou, S.Y., Wahbe, R., Govindan, R., Andrews, M.: Support for Con-
tinuous Media in the Dash System, Proc. of the 10th Int. Conf. on Distributed Comput-
ing Systems, Paris, May 1990

[CHT 86] Christodoulakis, S., Ho, F., Theodoridou, M.: The Multimedia Object Presentation
Manager of MINOS: A Symmetric Approach, Proc. Int. Conf. on Management of Data,
Washington, 1986, pp. 295–310

[DL 91] Dürr, M., Lang, S.M.: A Data Schema Approach to Multi-Media Database System Ar-
chitecture, Int. Conf. on Multimedia Information Systems ’91, Singapore, McGraw–
Hill Book Co., pp. 311–317

[Fi 92] Fischer, G.: Updates in Object-Oriented Database Systems by Method Calls Queries.
Proc. of 3rd ERCIM Database Research Group Workshop, Pisa, Sept. 1992

[GC 91] Gemmel, J., Christodoulakis, S.: Principles Of Delay Sensitive Multi-Media Data Re-
trieval, Int. Conf. on Multimedia Information Systems ’91, Singapore, McGraw-Hill
Book Co., pp. 147–158

[Gi 91] Gibbs, S.: Composite Multimedia and Active Objects, Proc. of the ACM OOPSLA ’91,
pp. 97–112

[Kl 92a] Klas, W.: Tailoring an Object-Oriented Database System to Integrate External Multime-
dia Devices, Proc. of 1992 Workshop on Heterogeneous Databases & Semantic Inter-
operability, Boulder, CL, Feb. 10–12, 1992,

[Kl 92b] Klas, W., et al.: VML – The VODAK Model Language, Version 2.0, working paper,
GMD-IPSI, 1992

[KN 90] Klas, W., Neuhold, E.J.: Designing Intelligent Hypertext Systems U sing an Open Ob-
ject-Oriented Database Model, Arbeitspapiere der GMD 498, St. Augustin, Sept. 1990

[KNS 89] Klas, W., Neuhold, E.J., Schrefl, M.: Tailoring Object-Oriented Data Models through
Metaclasses, Proc. of the Advanced Database Systems Symposium, Kyoto, Japan, 1989

[KNS 90] Klas, W., Neuhold, E.J., Schrefl, M.: Using an Object-Oriented Approach to Model
Multimedia Data, Computer Communications, Special Issue on Multimedia Systems
13(4), 1990

[LG 90] Little, T.D.C., Ghafoor, A.: Multimedia Object Models for Synchronization and Data-
bases, IEEE J. Selected Areas Communication 8, No. 3, 1990

[MHB 91] Manola F., Hornick M.F., Buchmann A.P.: Object Data Model Facilities for Multimedia
Data Types. TM–0332–11–90–165, GTE Laboratories Incorporated, Waltham MA,
1991.

[MPR 92] Marchisio, P., Panicciari, P., Rodi, P.: A Hypermedia Object Model And Its Presentation
Environment, 3rd Eurographics Workshop on object-oriented graphics, Chamery, Swit-
zerland, October 1992

[MR 93] Moser, F., Rakow, T.: The Multimedia Data Direct Access Protocol, in progress

www.manaraa.com

21

[MRKN 92]Muth P., Rakow T. C., Klas W., Neuhold E.J.: A Transaction Model for an Open
Publication Environment. In: Ahmed K. Elmagarmid (Ed.): Database Transaction
Models for Advanced Applications. Morgan Kaufmann Publishers, San Mateo, Ca.,
1992.

[MUSE 93]Lux, G.: MUSE – Multimedia Technology for System Engineering, ERCIM workshop,
Trondheim, Norway, May 1993

[MW 91] Meyer-Wegener, K.: Multimedia-Datenbanken, B.G. Teubner Stuttgart, 1991

[PE 91] Park, A., English, P.: A Variable Rate Strategy for Retrieving Audio Data from Second-
ary Storage, Int. Conf. on Multimedia Information Systems ’91, Singapore, McGraw–
Hill Book Co., pp. 135–146

[RM 93] Rakow, T.C., Muth, P.: The V3 Video Server – Managing Analog and Digital Video
Clips, Description of Demonstration, accepted for SIGMOD ‘93, Washington DC, May
1993

[RS 92] Rowe, L.A., Smith, B.C.: A Continuous Media Player, AIV Workshop 1992

[Sh 90] Shetler, T.: Birth of the BLOB, BYTE, Februar 1990, pp. 221–226

[Ste 90] Steinmetz, R.: Synchronization Properties in Multimedia Systems. IEEE Journal on
Selected Areas in Communications Vol.8 No. 3 April 1990.

[TR 93] Turau, V., Rakow, T.C.: A Schema Partition for Multimedia Database Management Sys-
tems, GMD Report 729, St. Augustin, Feb. 1993

[WKL 86] Woelk, D., Kim, W., Luther, W.: An Object-Oriented Approach to Multimedia Data-
bases, Proc. ACM, ACM, New York, May 1986, pp. 311–325

[WK 87] Woelk, D., Kim, W.: Multimedia Information Management in an Object-Oriented Data-
base System. Proc. 13th Int. Conf. on VLDB, Los Altos, CA, 1987, pp. 319–329

